Approved by:	
Checked by:	
Issued by:	

SPECIFICATION

PRODUCT: SAW RESONATOR

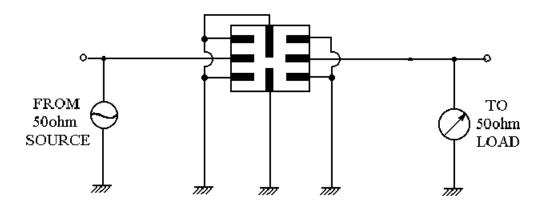
MODEL: HDR435.7M S3

MARKING: HD 468

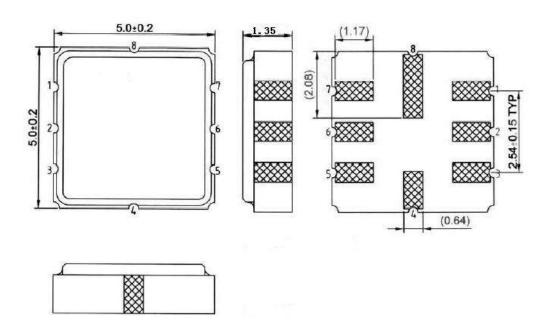
SHOULDER ELECTRONICS LIMITED

1. SCOPE

This specification shall cover the characteristics of 1-port SAW resonator with 435.7M used for remote-control security.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V				
AC Voltage Vpp	10V50Hz/60Hz				
Operation temperature	-20°C to +85°C				
Storage temperature	-45°C to +85°C				
RF Power Dissipation	0dBm				


Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum	
Center Freq	uency	MHz	435.625	435.700	435.775	
Insertion Lo	oss	dB		1.5	2.5	
Quality Factor	· Unload Q			12,800		
50 Ω	Loaded Q			2,000		
Temperature	Temperature Turnover Temperature		10	25	40	
Stability	Turnover Frequency	KHz		fo		
	Freq.temp.Coefficient	ppm/°C2		0.032		
Frequency Ag	ing	ppm/yr		<±10		
DC. Insulation	Resistance	ΜΩ	1.0			
	Motional Resistance R1	Ω		18	26	
RF Equivalent	Motional Inductance L1	μН		86		
RLC Model	Motional Capacitance C1	pF		1.5		
Pin 1 to Pin 2	Staic Capacitance	pF	1.7	2.0	2.3	
Transducer Sta	atic Capacitance	pF		1.9		

3. TEST CIRCUIT

4. DIMENSION

2.Input

6.Output

1.3.5.7.Gound

4.8 Ground

5. ENVIRONMENTAL CHARACTERISTICS

5-1 Temperature cycling

Subject the device to a low temperature of -40°C for 30 minutes. Following by a high temperature of $+25^{\circ}\text{C}$ for 5 Minutes and a higher temperature of $+85^{\circ}\text{C}$ for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in table 1.

5-2 Resistance to solder heat

Submerge the device terminals into the solder bath at $260^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in table 1.

5-3 Solderability

Submerge the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in table 1.

5-4 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the filter shall fulfill the specifications in table 1.

5-5 Vibration

Subject the device to the vibration for 2 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The filter shall fulfill the specifications in table 1.

6. REMARK

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

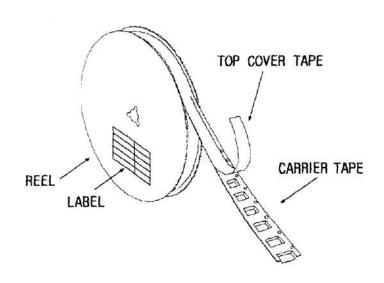
Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

7. Packing

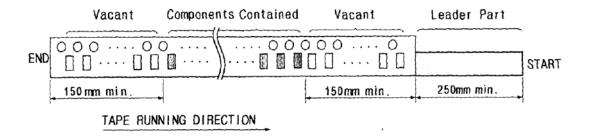
7.1 Dimensions


- (1) Carrier Tape: Figure 1
- (2) Reel: Figure 2
- (3) The product shall be packed properly not to be damaged during transportation and storage.

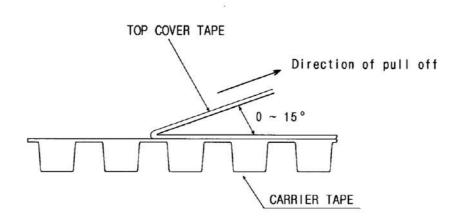
7.2 Reeling Quantity

1000 pcs/reel 7" 3000 pcs/reel 13"

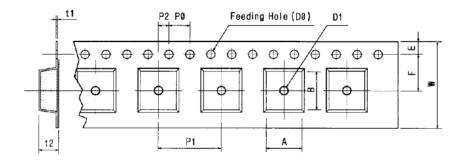
7.3 Taping Structure


(1) The tape shall be wound around the reel in the direction shown below.

(2) Label

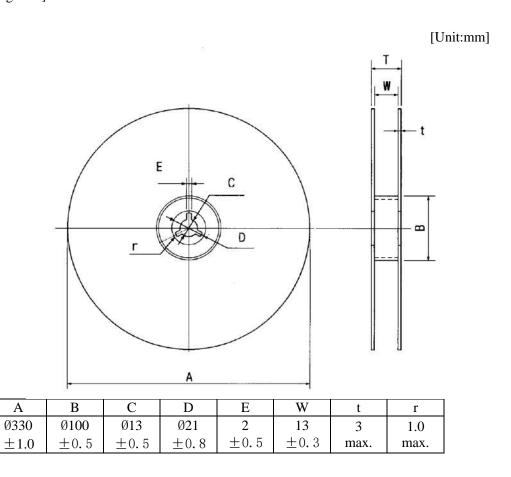

Device Name	
User Product Name	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.



8. TAPE SPECIFICATIONS

- 8.1 Tensile Strength of Carrier Tape: 4.4N/mm width
- 8.2 Top Cover Tape Adhesion (See the below figure)
 - (1) pull off angle: 0~15° (2) speed: 300mm/min.
 - (3) force: 20~70g


[Figure 1] Carrier Tape Dimensions

Tape Running Direction

								[Unit:mm]			
W	F	Е	P0	P1	P2	D0	D1	t1	t2	Α	В
12.0	5.5	1.75	4.0	8.0	2.0	Ø1.5	Ø1.0	0.3	2.10	6.40	5.20
± 0.3	± 0.05	± 0.1	± 0.1	± 0.1	± 0.05	± 0.1	± 0.25	± 0.05	± 0.1	± 0.1	± 0.1

[Figure 2]

